首页> 外文OA文献 >The Complexity of Distributed Edge Coloring with Small Palettes
【2h】

The Complexity of Distributed Edge Coloring with Small Palettes

机译:分布式边缘着色与小调色板的复杂性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The complexity of distributed edge coloring depends heavily on the palettesize as a function of the maximum degree $\Delta$. In this paper we explore thecomplexity of edge coloring in the LOCAL model in different palette sizeregimes. 1. We simplify the \emph{round elimination} technique of Brandt et al. andprove that $(2\Delta-2)$-edge coloring requires $\Omega(\log_\Delta \log n)$time w.h.p. and $\Omega(\log_\Delta n)$ time deterministically, even on trees.The simplified technique is based on two ideas: the notion of an irregularrunning time and some general observations that transform weak lower boundsinto stronger ones. 2. We give a randomized edge coloring algorithm that can use palette sizes assmall as $\Delta + \tilde{O}(\sqrt{\Delta})$, which is a natural barrier forrandomized approaches. The running time of the algorithm is at most$O(\log\Delta \cdot T_{LLL})$, where $T_{LLL}$ is the complexity of apermissive version of the constructive Lovasz local lemma. 3. We develop a new distributed Lovasz local lemma algorithm fortree-structured dependency graphs, which leads to a $(1+\epsilon)\Delta$-edgecoloring algorithm for trees running in $O(\log\log n)$ time. This algorithmarises from two new results: a deterministic $O(\log n)$-time LLL algorithm fortree-structured instances, and a randomized $O(\log\log n)$-time graphshattering method for breaking the dependency graph into independent $O(\logn)$-size LLL instances. 4. A natural approach to computing $(\Delta+1)$-edge colorings (Vizing'stheorem) is to extend partial colorings by iteratively re-coloring parts of thegraph. We prove that this approach may be viable, but in the worst caserequires recoloring subgraphs of diameter $\Omega(\Delta\log n)$. This standsin contrast to distributed algorithms for Brooks' theorem, which exploit theexistence of $O(\log_\Delta n)$-length augmenting paths.
机译:分布边缘着色的复杂度在很大程度上取决于作为最大度数$ \ Delta $的函数的调色板大小。在本文中,我们探索了在局部调色板大小不同的局域模型中边缘着色的复杂性。 1.我们简化了Brandt等人的\ emph {舍入消除}技术。并证明$(2 \ Delta-2)$边缘着色需要$ \ Omega(\ log_ \ Delta \ log n)$ w.h.p。和$ Omega(\ log_ \ Delta n)$时间是确定的,即使在树上也是如此。简化的技术基于两个思想:不规则运行时间的概念和一些将弱下限转换为强下限的常规观察。 2.我们提供了一种随机边缘着色算法,该算法可以使用大小为$ \ Delta + \ tilde {O}(\ sqrt {\ Delta})$的调色板,这是随机方法的自然障碍。该算法的运行时间最多为$ O(\ log \ Delta \ cdot T_ {LLL})$,其中$ T_ {LLL} $是构造性Lovasz局部引理的宽松版本的复杂度。 3.我们为树结构的依赖图开发了一种新的分布式Lovasz局部引理算法,从而为在$ O(\ log \ log n)$时间内运行的树提供了$(1+ \ epsilon)\ Delta $ -edgecoloring算法。该算法来自两个新结果:用于树状结构实例的确定性$ O(\ log n)$-时间LLL算法,以及用于将依赖关系图分解为独立的随机$ O(\ log \ log n)$-时间图粉碎方法$ O(\ logn)$大小的LLL实例。 4.计算$(\ Delta + 1)$边缘着色(Vizing定理)的一种自然方法是通过迭代地重着色图形的某些部分来扩展部分着色。我们证明了这种方法可能是可行的,但在最坏的情况下,需要重新着色直径为\\ Omega(\ Delta \ log n)$的子图。这与布鲁克斯定理的分布式算法相反,后者利用了$ O(\ log_ \ Delta n)$长度增长路径的存在。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号